聚合物太陽能電池材料


鋰電世界聚合物太陽能電池材料常見的有聚乙烯基咔唑(PVK)、聚乙炔(PA)、聚對苯撐乙烯(PPV)以及聚噻吩(PTh)。
(1)聚乙烯基咔唑(PVK)
具有光電活性的聚合物中,發現最早、研究得最為充分的是PVK,它的側基上帶有大的電子共軛體系,可吸收紫外光。激發出的電子可以通過相鄰咔唑環形成的電荷復合物自由遷移。通常用I2、SbCl3、三硝基芴酮(TNF)、及硝基二苯乙烯基苯衍生物合四氰醌(TCNQ)等對其進行摻雜。
(2)聚乙炔(PA) PA是迄今為止實測電導率最高的電子聚合物。它的聚合方法主要有白川英樹法、Namm方法、Durham方法和稀土催化體系。白川英樹采用高濃度的Ziegler-Natta催化劑,即TiOBu4-A1Et3,由氣相乙炔出發,直接制備出自支撐的具有金屬光澤的聚乙炔膜;在取向了的液晶基質上成膜,PA膜也高度取向。Narrman方法的特點是對聚合催化劑“高溫陳化”,因而聚合物力學性質和穩定性有明顯改善。
(3)聚對苯撐乙烯(PPV)
近年來在光電領域應用最廣泛的、目前制得器件效率最高的是PPV類材料。由于是共軛結構,分子鏈鋼性很強,往往難熔難溶,不易加工。獲得可溶性PPV的方法是在苯環上至少引入一個長鏈烷烴。烷烴碳個數至少大于6。研究還發現取代基有支鏈時比相同碳數的直鏈烷烴溶解度更好。具有代表性的材料是MEH-PPV(MEH;2-methoxy-5(2’-ethylhexyloxy)),它具有較好的溶解性,使用方便;禁帶寬度為2.1eV,較為適中。
(4)聚噻吩(PT)衍生物
在所有的共軛聚合物中,聚噻吩是一種非常優良的光伏材料,因為其具有合適的帶隙和較高的空穴遷移率,所以成為了近幾年來有機光伏材料的研究熱點之一。其中,以區域規整的聚(3-己基)噻吩(P3HT)和可溶性C60衍生物PCBM的共混膜做為活性層的光伏器件在熱處理的情況下能量轉換效率最高,能量轉換效率已經達到了5%左右。因此,設計并合成出新型的聚噻吩衍生物,研究聚噻吩結構和性質之間的關系,通過結構修飾來改善聚噻吩衍生物的性質引起了廣大科研人員的關注。從光伏材料的角度來考慮,這些聚噻吩衍生物應該具有最基本的性質:好的溶解性和成膜性,較寬的吸收光譜(尤其在可見光區)和較高載流子遷移率。